Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 20616, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36450816

RESUMO

Achalasia is an esophageal motility disorder characterized by the functional loss of myenteric plexus ganglion cells in the distal esophagus and lower esophageal sphincter. Histological changes have been reported in the esophageal mucosa of achalasia, suggesting its involvement in disease pathogenesis. Despite recent advances in diagnosis, our understanding of achalasia pathogenesis at the molecular level is very limited and gene expression profiling has not been performed. We performed bulk RNA-sequencing on esophageal mucosa from 14 achalasia and 8 healthy subjects. 65 differentially expressed genes (DEGs) were found in the distal esophageal mucosa of achalasia subjects and 120 DEGs were identified in proximal esophagus. Gene expression analysis identified genes common or exclusive to proximal and distal esophagus, highlighting regional differences in the disease. Enrichment of signaling pathways related to cytokine response and viral defense were observed. Increased infiltration of CD45+ intraepithelial leukocytes were seen in the mucosa of 38 achalasia patients compared to 12 controls. Novel insights into the molecular changes occurring in achalasia were generated in this transcriptomic study. Some gene changes observed in the mucosa of achalasia may be associated with esophagitis. Differences in DEGs between distal and proximal esophagus highlight the importance of better understanding regional differences in achalasia.


Assuntos
Acalasia Esofágica , Humanos , Acalasia Esofágica/genética , Mucosa Esofágica , Análise de Sequência de RNA , Sequência de Bases , RNA
2.
Nat Cancer ; 2: 978-993, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34738088

RESUMO

Multi-tyrosine kinase inhibitors (MTKIs) have thus far had limited success in the treatment of castration-resistant prostate cancer (CRPC). Here, we report a phase I-cleared orally bioavailable MTKI, ESK981, with a novel autophagy inhibitory property that decreased tumor growth in diverse preclinical models of CRPC. The anti-tumor activity of ESK981 was maximized in immunocompetent tumor environments where it upregulated CXCL10 expression through the interferon gamma pathway and promoted functional T cell infiltration, which resulted in enhanced therapeutic response to immune checkpoint blockade. Mechanistically, we identify the lipid kinase PIKfyve as the direct target of ESK981. PIKfyve-knockdown recapitulated ESK981's anti-tumor activity and enhanced the therapeutic benefit of immune checkpoint blockade. Our study reveals that targeting PIKfyve via ESK981 turns tumors from cold into hot through inhibition of autophagy, which may prime the tumor immune microenvironment in advanced prostate cancer patients and be an effective treatment strategy alone or in combination with immunotherapies.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias de Próstata Resistentes à Castração , Autofagia , Humanos , Imunoterapia/métodos , Masculino , Fosfatidilinositol 3-Quinases/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...